Speakers

Neville Hogan
Massachusetts Institute of Technology
Departments of Mechanical Engineering and Brain & Cognitive Sciences

Quantitative models of human performance facilitate physical collaboration with robots

Abstract

Bio

Sami Haddadin
Technical University of Munich
Munich School of Robotics and Machine Intelligence

Abstract

Bio

Nathalie Sebanz
Central European University
Department of Cognitive Science

Learning from Joint Action in Humans

Abstract

Bio

Ilana Nisky
Ben Gurion University of the Negev
Department of Biomedical Engineering

Modeling human sensorimotor control for better control of surgical robots

Abstract

Ilana Nisky received the B.Sc (summa cum laude), M.Sc. (summa cum laude), and Ph.D. in Biomedical Engineering from the Department of Biomedical Engineering, Ben-Gurion University of the Negev, Israel. She is currently a senior lecturer in the Department of Biomedical Engineering, Ben-Gurion University of the Negev, where she is the head of the Biomedical Robotics Lab. She is also the head of the Israel-Italy Virtual Lab on Artificial Somatosensation for Humans and Humanoids. She was previously a postdoctoral research fellow in the Department of Mechanical Engineering, Stanford University. She is the recepient of the 2019 IEEE RAS Early Academic Career Award, the prestigious Alon Fellowship for young faculty from the Israeli Council for High Education, and the Marie Curie International Outgoing Fellowship from the European Commission. Her research interests include human motor control, haptics, robotics, human and machine learning, teleoperation, and robot-assisted surgery, and her lab is supported by competitive grants from the Israeli Science Foundation, the Israel-US Binational Science Foundation, and the Ministry of Science and Technology. Nisky has authored more than 60 scientific publications in peer-reviewed journals and conference proceedings, and numerous abstracts in international conferences. She is an Associate Editor at the IEEE Transactions on Haptics and the IEEE Robotics and Automation Letters journals, a member of the BGU ABC Robotics Initiatuve, and serves on the steering committee of the Zlotowski Center for Neuroscience. She served as an executive committee member of the EuroHaptics Society 2014-2018, and is a board member of the Israeli Society for Medical and Biological Engineering. She is a Senior Member of IEEE, a member of the Society for the Neural Control of Movement, the Society for Neuroscience, Technical Committee on Haptics, and American Physiology Society.

Daniel Ferris
University of Florida
Department of Biomedical Engineering

Comprehensive physiological assessment of human-robot interactions

Abstract

Bio

Joao Ramos
University of Illinois at Urbana-Champaign
Department of Mechanical Science and Engineering

Whole-Body Teleoperation of Humanoid Robots via Bilateral Feedback for Dynamic Physical Interactions

Autonomous humanoid robots are still far from matching the sophistication and adaptability of human’s perception and motor control performance. To address this issue, I investigate the utilization of human whole-body motion to command a remote humanoid robot in real-time, while providing the operator with physical feedback from the robot’s actions. In this talk, I will present the challenges of virtually connecting the human operator with a remote machine in a way that allows the operator to utilize innate motor intelligence to control the robot’s interaction with the environment. I present pilot experiments in which an operator controls a humanoid robot to perform power manipulation tasks, such as swinging a firefighter axe to break a wall, and dynamic locomotion behaviors, such as walking and jumping.

Joao Ramos currently works as Assistant Professor at the University of Illinois at Urbana-Champaign. He previously worked as a Postdoctoral Associate working at the Biomimetic Robotics Laboratory, at the Massachusetts Institute of Technology. He received a PhD from the Department of Mechanical Engineering at MIT in 2018. During his doctoral research, he developed teleoperation systems and strategies to dynamically control a humanoid robot utilizing human whole-body motion via bilateral feedback. His research focus on the design and control of robotic systems that experiences large forces and impacts, such as the MIT HERMES humanoid, a prototype platform for disaster response. Additionally, his research interests include human-machine interfaces, legged locomotion dynamics, and actuation systems.

Julie Shah
Massachusetts Institute of Technology
Department of Aeronautics and Astronautics

Integrated Models for Temporal, Spatial and Semantic Prediction of Behavior

Abstract

Bio

Andrea Cherubini
University of Montpellier
Laboratory of Computer Science, Robotics and Microelectronics of Montpellier

From perception to inter-action

Abstract

Bio