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Abstract—Earning trust is essential for physical human-robot
interaction, and a robot need to learn how to gain trust before
initiating interaction. Current research on trust has conducted
experiments where people interact with real robots. In this paper,
especially in relation to the COVID-19 situation, we develop a
simulation in which the robot learns the policy of moving closer
to the person to initiate a simple medical interaction such as
temperature measuring. We incorporate facial expression of a
person in confrontation of a robot and the distance between the
person and the robot in our reinforcement learning process. In the
developed simulation, the robot moves according to the learned
trust knowledge to lower the discomfort level and successfully
approach a person.

Index Terms—Physical human-robot interaction, policy net-
work, reinforcement learning, simulation, trust

I. INTRODUCTION

Physical human-robot interaction (pHRI) is inevitable. In
particular, robots can effectively reduce the risk that comes
from situations where contact between people can be danger-
ous. Robots can provide alternative solutions in conducting
basic medical tasks such as temperature measurements while
reducing physical contacts between people, aiding medical
staffs and first responders. In pHRI, trust is one of the most im-
portant factors to be considered. If people feel uncomfortable,
it is not appropriate for robots to get closer. There have been
researches on trust such as quantifying the effects of a human,
robot, and environmental factors on perceived trust in human-
robot interaction [1]. Perceiving the responses from human
and applying to real-time policy learning in pHRI is essential,
however the real-world experiments have many challenging
issues. Therefore, we developed a hybrid simulation that a
simulated robot learns the policy for moving while extracting
features from the human’s responses from real-world with a
camera who is observing the robot’s actions in simulation,
which reflects the robot and environmental mapping represent-
ing human intentions. We employ reinforcement learning (RL)
algorithms to process features that are important to trusting the
robot that reflects the policy to determine the next moves. In
the developed simulation, the robot moves according to the
knowledge learned so that people do not feel uncomfortable.

Human-robot interaction is difficult to train in advance
using simulation. In a typical RL training environment in
simulation, the robot has its state, and after observing the

Fig. 1. Simulation environment for trust policy learning.

environment, it acts and gets rewarded in the environment.
In this completely autonomous environment, it is difficult
to reveal human intentions and reflect them in experiments.
Therefore, we developed a new simulation to connect the
simulation environment with the intention expression of real
users. This will allow the robot to learn in advance the policy
regarding human-robot interaction in simulation.

II. METHOD

We developed our simulation using Pepper, a humanoid
robot, as shown in Fig. 1. Since we used Pepper, we created
a simulation environment based on qiBullet [2], which is a
Bullet [3]-based python simulation for SoftBank Robotics’
robots. And, we implemented an RL OpenAI gym env [4] for
Pepper so trust policy can be trained using a variety of RL
methods. We used a webcam on the PC to get the image of
the user sitting in front of the PC in real-time. During the
simulation, the user can see how Pepper moves around the
model of the person, which is considered to be the user, in the
simulation environment. Based on the RGB image, real face
features of the user are extracted in real-time and reflected in
the learning of the trust policy that determines how Pepper
moves.

First, the dlib [5] library was used to crop and align the face
parts in the RGB image. By integrating the facial expression
recognition network [6], facial features were extracted. We
assume that the user’s facial expression can show how the
user feels about the situation that Pepper is getting closer to
the user. The distances measured by the three laser sensors on



Fig. 2. Results of training the policy network using A2C. The change in
reward (y-axis) over episode (x-axis) was plotted. The empty parts of the
graph had negative value rewards and were not displayed.

Pepper were also used. The facial features and laser sensor
values were used as the state of the RL environment. Actions
were defined in five ways: move forward, move backward,
move right, move left, and stop. During RL, a policy network
is learned that generates action from the features used as
the state. We also added aspects of social interaction to the
simulation by reflecting user responses as to whether Pepper
can come to the user (the human model of the simulation).
The human model moves according to the human responses,
and the responses are reflected in determining the reward.

We set the goal as Pepper approaching the user a certain
distance (50cm). Each episode ended when the goal was
achieved, the human moved away from Pepper and cannot
be detected, or the step exceeds a large value. The first case
is considered successful and the other two are considered
failures. The reward was set for each step to 10 times the
value of the target distance minus the distance from Pepper
to the human model. If the user allowed Pepper to approach
the human model, the reward was determined by 30 times the
value of the previous distance minus the current distance. And
if the episode was successful, a large positive value (300) was
provided. If the episode failed, that is, if the user was not
detected far from Pepper, or if the step was greater than a
large predefined value (1000), the episode failed and a negative
value (−30) was provided. Simulations can be done in real-
time and policy networks can be trained.

III. RESULTS

The real-time demonstrations were shown as a video attach-
ment. As shown in Fig. 1, the user can view the simulation
environment in real-time and the RGB image loaded from the
webcam is also displayed. For each step, the user can answer
whether Pepper can get closer to the human model by clicking
on the displayed button.

When training the policy, one of the three RL algorithms can
be chosen: Advantage Actor-Critic (A2C) [7], Proximal Policy
Optimization (PPO) [8], or Scalable trust-region method for
deep reinforcement learning using Kronecker-factored approx-
imation (ACKTR) [9]. A2C is a synchronous deterministic
version of A3C [7]. We used the open-source code for training
and evaluation [10]. In this paper, we used A2C to train policy
and showed the results as a reward graph, as shown in Fig. 2.
The change in reward over episode was plotted. The reward

increases over about 300 episodes and then converges to about
300 given as a reward for success. From the results of the
increased reward, it was verified that our trust policy was
effectively trained in the developed simulation environment.

IV. DISCUSSION

Since RL uses rewards obtained in response to random
situations for policy network learning, it is difficult to apply
RL to pHRI that utilizes real robots and involves human
interaction. Also, generating a random situation in pHRI is
extremely dangerous because robots have great power and
there must be physical contact during the interaction. In this
sense, our simulation reduces these issues and allows to train
the policy in a safe situation. Besides, in the experiments using
a real robot, it takes a lot of time and works to prepare for
the experiment, such as setting up the robot and recruiting
people for interaction. Our model can reduce them. We expect
our trust policy learning to be generally used in a variety of
situations involving physical interactions. This is because it is
a general way to reflect facial features and sensor values in
the robot’s motion decision.

For our future work, we plan to reflect the intentions of
people inherent in the semantic features of sentences by adding
dialogue interactions based on natural language processing.
We also plan to use the developed simulation to learn the trust
policy as a fast adaptation stage, and then test and finetune it
in real interaction situations.
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